organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan-Shan Zhao,^a Ji-Quan Zhao,^a* Jian-Xun Li,^b Qian Wang^a and Dong-Min Zhao^a

^aSchool of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China, and ^bDepartment of Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China

Correspondence e-mail: zhaojq@hebut.edu.cn

Key indicators

Single-crystal X-ray study T = 113 K Mean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.104 Data-to-parameter ratio = 9.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-*tert*-Butyl-3-{[6-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yloxy]methyl}-2-hydroxybenzaldehyde

Theare are two independent molecules in the asymmetric unit of the title compound, $C_{24}H_{34}O_{8}$. The crystal packing is mainly determined by weak intermolecular $C-H\cdots O$ hydrogen bonds and van der Waals interactions. Received 12 June 2006 Accepted 11 July 2006

Comment

Chiral manganese-salen complexes [salen is bis(salicylidene)ethylenediamine] are effective catalysts owing to their ability for highly stereoselective epoxidation of unfunctionalized alkenes (Lane & Burgess, 2003). In order to test the effects of carbohydrates on the asymmetric epoxidation of olefins, we have designed and synthesized a series of chiral salicyaldehyde derivatives, ligands and complexes. The structure of 3-tert-butyl-5-{[5-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yloxy]methyl}-2hydroxybenzaldehyde has been reported previously (Zhao et al., 2006). In this paper, we present the results of our study of another derivative of salicyaldehyde, (I), obtained by the condensation of 5-tert-butyl-3-(chloromethyl)-2-hydroxybenzaldehyde and 2,3:5,6-di-O-isopropylidede-α-D-mannofuranose.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), which show normal bond distnaces and angles (Allen *et al.*, 1987). The distances between the newly bonded atoms C13–O6 and C37–O14 are 1.442 (3) and 1.433 (3) Å, respectively. In the crystal structure, weak intermolecular C– $H \cdots O$ hydrogen bonds (Table 1) contribute to the stabilization of the crystal packing (Fig. 2), along with van der Waals interactions.

Experimental

The title compound was prepared according to the procedure of Zhao *et al.* (2006). Colourless single crystals of (I) were grown by slow evaporation of a petroleum ether–EtOAc (5:1 v/v) solution. The structure of (I) (m.p. 353–354 K) was confirmed by optical rotation { $[\alpha]_D^{20} = +85.0^{\circ}$ (EtOH)}, elemental analysis, NMR and IR data.

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $C_{24}H_{34}O_8$ $M_r = 450.51$ Monoclinic, P_{2_1} a = 12.7880 (19) Å b = 6.7749 (10) Å c = 26.859 (4) Å $\beta = 92.118 (2)^{\circ}$ $V = 2325.4 (6) \text{ Å}^3$

Data collection

Rigaku Saturn CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.970, T_{\max} = 0.985$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$ S = 1.005939 reflections 598 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D-\mathrm{H}\cdots A$
O7-H7···O8	0.84 (3)	1.84 (3)	2.618 (2)	152 (3)
$C13-H13B\cdots O4^{i}$	0.99	2.35	3.330 (3)	172
$C37-H37B\cdots O12^{i}$	0.99	2.44	3.398 (3)	163

Z = 4

 $D_x = 1.287 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.32 \times 0.20 \times 0.16 \text{ mm}$

20584 measured reflections

5939 independent reflections

4809 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

 $\mu = 0.10 \text{ mm}^{-1}$

T = 113 (2) K

 $R_{\rm int} = 0.038$

 $\theta_{\rm max} = 27.9^\circ$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Symmetry code: (i) x, y - 1, z.

The H atom of the hydroxy group was located in a difference Fourier map and refined, with an O–H distance restraint of 0.84 (3) Å. All other H atoms were included in calculated positions, with C–H = 0.95–1.00 Å and $U_{\rm iso}(\rm H) = 1.2U_{\rm eq}(\rm C)$ or $1.5U_{\rm eq}(\rm methyl$ C). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement; the absolute configuration is known from that of the mannofuranose reagent.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure*.

This work was supported financially by the National Natural Science Foundation, China (grant No. 20376017).

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

A packing diagram of (I), viewed along the a axis. Dashed lines denote intermolecular hydrogen bonds

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Lane, B. S. & Burgess, K. (2003). Chem. Rev. 103, 2457-2473.
- Rigaku/MSC (2005). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.3.6). Rigaku/MCS, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhao, S.-Ś., Zhao, J.-Q. & Zhao, D.-M. (2006). Acta Cryst. E62, o2537-o2538.