Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan-Shan Zhao, ${ }^{\text {a }}$ Ji-Quan

Zhao, ${ }^{\text {a }}$ Jian-Xun Li, ${ }^{\text {b }}$ Qian
Wang ${ }^{\text {a }}$ and Dong-Min Zhao ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China

Correspondence e-mail: zhaojq@hebut.edu.cn

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.104$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-tert-Butyl-3-\{[6-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]-dioxol-4-yloxy]methyl\}-2-hydroxybenzaldehyde

Theare are two independent molecules in the asymmetric unit of the title compound, $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}$. The crystal packing is mainly determined by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and van der Waals interactions.

Comment

Chiral manganese-salen complexes [salen is bis(salicylidene)ethylenediamine] are effective catalysts owing to their ability for highly stereoselective epoxidation of unfunctionalized alkenes (Lane \& Burgess, 2003). In order to test the effects of carbohydrates on the asymmetric epoxidation of olefins, we have designed and synthesized a series of chiral salicyaldehyde derivatives, ligands and complexes. The structure of 3-tert-butyl-5-\{[5-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3- d][1,3]dioxol-6-yloxy]methyl\}-2hydroxybenzaldehyde has been reported previously (Zhao et al., 2006). In this paper, we present the results of our study of another derivative of salicyaldehyde, (I), obtained by the condensation of 5-tert-butyl-3-(chloromethyl)-2-hydroxybenzaldehyde and 2,3:5,6-di- O-isopropylidede- α-d-mannofuranose.

(I)

The asymmetric unit of (I) contains two independent molecules (Fig. 1), which show normal bond distnaces and angles (Allen et al., 1987). The distances between the newly bonded atoms C13-O6 and C37-O14 are 1.442 (3) and 1.433 (3) A., respectively. In the crystal structure, weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) contribute to the stabilization of the crystal packing (Fig. 2), along with van der Waals interactions.

Experimental

The title compound was prepared according to the procedure of Zhao et al. (2006). Colourless single crystals of (I) were grown by slow evaporation of a petroleum ether-EtOAc (5:1 v / v) solution. The structure of (I) (m.p. 353-354 K) was confirmed by optical rotation $\left\{[\alpha]_{D}^{20}=+85.0^{\circ}(\mathrm{EtOH})\right\}$, elemental analysis, NMR and IR data.

Received 12 June 2006
Accepted 11 July 2006

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}$
$M_{r}=450.51$
Monoclinic, $P 2_{1}$
$a=12.7880$ (19) \AA
$b=6.7749$ (10) \AA
$c=26.859$ (4) \AA
$\beta=92.118$ (2) ${ }^{\circ}$
$V=2325.4(6) \AA^{3}$

Data collection

Rigaku Saturn CCD area-detector diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.970, T_{\max }=0.985$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.104$
$S=1.00$
5939 reflections
598 parameters

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.287 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=113(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.32 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

20584 measured reflections 5939 independent reflections 4809 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.9^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0633 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.36 \mathrm{e}_{\mathrm{m}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O15-H15 \cdots O16	$0.83(3)$	$1.87(3)$	$2.617(2)$	$150(3)$
O7-H7 \cdots O8	$0.84(3)$	$1.84(3)$	$2.618(2)$	$152(3)$
C13-H13B \cdots O $^{\mathrm{i}}$	0.99	2.35	$3.330(3)$	172
C37-H37B $\cdots \mathrm{O}^{\mathrm{i}}$		0.99	2.44	$3.398(3)$
Symmetry code: (i) $x, y-1, z$			163	

The H atom of the hydroxy group was located in a difference Fourier map and refined, with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.84 (3) Å. All other H atoms were included in calculated positions, with C-H $=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement; the absolute configuration is known from that of the mannofuranose reagent.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

This work was supported financially by the National Natural Science Foundation, China (grant No. 20376017).

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram of (I), viewed along the a axis. Dashed lines denote intermolecular hydrogen bonds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Lane, B. S. \& Burgess, K. (2003). Chem. Rev. 103, 2457-2473.
Rigaku/MSC (2005). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.3.6). Rigaku/MCS, The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhao, S.-S., Zhao, J.-Q. \& Zhao, D.-M. (2006). Acta Cryst. E62, o2537-o2538.

[^0]: © 2006 International Union of Crystallography All rights reserved

